手动代码审查和静态代码分析仪是验证源代码是否符合编码策略的传统机制。但是,这些机制很难扩展。我们将代码合规性评估作为机器学习(ML)问题,以将自然语言政策和代码作为输入,并对代码的遵守,不合规或无关紧要产生预测。这可以帮助扩展合规性分类,并搜索不受传统机制涵盖的政策。我们探讨有关ML模型公式,培训数据和评估设置的关键研究问题。核心思想是获得一个联合代码嵌入式空间,该空间通过代码和策略嵌入的向量距离保持合规性关系。由于没有特定于任务的数据,我们将重新解释和过滤常用的软件数据集,并具有其他预训练和预先调查的任务,以减少语义差距。我们在两种编码策略列表(CWE和CBP)上进行了基准测试。这是零射门评估,因为培训集中没有任何政策。在CWE和CBP上,与Codebert相比,我们的工具策略2Code的分类精度为(59%,71%)和搜索MRR(0.05,0.21),分类精度为(37%,54%)和MRR(0.02,0.02,0.02,0.02,0.02 )。在用户研究中,接受24%的策略检测,而Codebert则接受了7%。
translated by 谷歌翻译
分享自治是指使自治工人能够与人类合作的方法,以提高人类性能。然而,除了提高性能之外,它通常也可能是有益的,代理同时考虑保留用户的经验或合作满意度。为了解决这一额外目标,我们通过约束自主代理的干预次数来研究改进用户体验的方法。我们提出了两种无模型的加强学习方法,可以考虑到干预措施的艰难和软限制。我们表明,我们的方法不仅表现出现有的基线,而且还消除了手动调整黑匣子超参数,以控制援助水平。我们还提供了对干预情景的深入分析,以进一步照亮系统理解。
translated by 谷歌翻译
深度神经网络(DNN)已经在许多领域实现了最先进的性能。然而,DNN需要高计算时间,并且人们始终期望在较低的计算中进行更好的性能。因此,我们研究人类躯体传感系统并设计神经网络(SPINANNET),以实现更高的计算准确性,计算较少。传统NNS中的隐藏层接收前一层中的输入,应用激活函数,然后将结果传送到下一个图层。在拟议的脊柱植物中,每层分为三个分裂:1)输入分割,2)中间分割,3)输出分割。每个层的输入拆分接收到输入的一部分。每个层的中间分割接收先前层的中间分离的输出和电流层的输入分割的输出。输入权重的数量明显低于传统的DNN。 SPINANNET还可以用作DNN的完全连接或分类层,并支持传统的学习和转移学习。我们在大多数DNN中观察到具有较低计算成本的显着误差。 VGG-5网络上的传统学习具有SPINALNET分类层,为QMNIST,Kuzushiji-Mnist,EMNIST(字母,数字和平衡)数据集提供了最先进的(SOTA)性能。传统学习与Imagenet预训练的初始重量和Spinalnet分类层提供了STL-10,水果360,Bird225和CALTECH-101数据集的SOTA性能。拟议的SPINANNET的脚本可按以下链接提供:https://github.com/dipuk0506/spinalnet
translated by 谷歌翻译
Making histopathology image classifiers robust to a wide range of real-world variability is a challenging task. Here, we describe a candidate deep learning solution for the Mitosis Domain Generalization Challenge 2022 (MIDOG) to address the problem of generalization for mitosis detection in images of hematoxylin-eosin-stained histology slides under high variability (scanner, tissue type and species variability). Our approach consists in training a rotation-invariant deep learning model using aggressive data augmentation with a training set enriched with hard negative examples and automatically selected negative examples from the unlabeled part of the challenge dataset. To optimize the performance of our models, we investigated a hard negative mining regime search procedure that lead us to train our best model using a subset of image patches representing 19.6% of our training partition of the challenge dataset. Our candidate model ensemble achieved a F1-score of .697 on the final test set after automated evaluation on the challenge platform, achieving the third best overall score in the MIDOG 2022 Challenge.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
Real-life tools for decision-making in many critical domains are based on ranking results. With the increasing awareness of algorithmic fairness, recent works have presented measures for fairness in ranking. Many of those definitions consider the representation of different ``protected groups'', in the top-$k$ ranked items, for any reasonable $k$. Given the protected groups, confirming algorithmic fairness is a simple task. However, the groups' definitions may be unknown in advance. In this paper, we study the problem of detecting groups with biased representation in the top-$k$ ranked items, eliminating the need to pre-define protected groups. The number of such groups possible can be exponential, making the problem hard. We propose efficient search algorithms for two different fairness measures: global representation bounds, and proportional representation. Then we propose a method to explain the bias in the representations of groups utilizing the notion of Shapley values. We conclude with an experimental study, showing the scalability of our approach and demonstrating the usefulness of the proposed algorithms.
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
Participants in political discourse employ rhetorical strategies -- such as hedging, attributions, or denials -- to display varying degrees of belief commitments to claims proposed by themselves or others. Traditionally, political scientists have studied these epistemic phenomena through labor-intensive manual content analysis. We propose to help automate such work through epistemic stance prediction, drawn from research in computational semantics, to distinguish at the clausal level what is asserted, denied, or only ambivalently suggested by the author or other mentioned entities (belief holders). We first develop a simple RoBERTa-based model for multi-source stance predictions that outperforms more complex state-of-the-art modeling. Then we demonstrate its novel application to political science by conducting a large-scale analysis of the Mass Market Manifestos corpus of U.S. political opinion books, where we characterize trends in cited belief holders -- respected allies and opposed bogeymen -- across U.S. political ideologies.
translated by 谷歌翻译
Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the United States. These factors have in turn led to increases in the frequency, extent, and severity of wildfires in recent years. Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is an urgency to provide tools for effective wildfire management. Early detection of wildfires is essential to minimizing potentially catastrophic destruction. In this paper, we present our work on integrating multiple data sources in SmokeyNet, a deep learning model using spatio-temporal information to detect smoke from wildland fires. Camera image data is integrated with weather sensor measurements and processed by SmokeyNet to create a multimodal wildland fire smoke detection system. We present our results comparing performance in terms of both accuracy and time-to-detection for multimodal data vs. a single data source. With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.
translated by 谷歌翻译
Purpose: Tracking the 3D motion of the surgical tool and the patient anatomy is a fundamental requirement for computer-assisted skull-base surgery. The estimated motion can be used both for intra-operative guidance and for downstream skill analysis. Recovering such motion solely from surgical videos is desirable, as it is compliant with current clinical workflows and instrumentation. Methods: We present Tracker of Anatomy and Tool (TAToo). TAToo jointly tracks the rigid 3D motion of patient skull and surgical drill from stereo microscopic videos. TAToo estimates motion via an iterative optimization process in an end-to-end differentiable form. For robust tracking performance, TAToo adopts a probabilistic formulation and enforces geometric constraints on the object level. Results: We validate TAToo on both simulation data, where ground truth motion is available, as well as on anthropomorphic phantom data, where optical tracking provides a strong baseline. We report sub-millimeter and millimeter inter-frame tracking accuracy for skull and drill, respectively, with rotation errors below 1{\deg}. We further illustrate how TAToo may be used in a surgical navigation setting. Conclusion: We present TAToo, which simultaneously tracks the surgical tool and the patient anatomy in skull-base surgery. TAToo directly predicts the motion from surgical videos, without the need of any markers. Our results show that the performance of TAToo compares favorably to competing approaches. Future work will include fine-tuning of our depth network to reach a 1 mm clinical accuracy goal desired for surgical applications in the skull base.
translated by 谷歌翻译